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In this paper, we investigate the dynamics of muddy-seabed motions induced by a
surface solitary wave. The muddy seabed is characterized as Bingham-plastic mud.
We focus our attention on the situations where the horizontal scale of the wave-
induced mud flow is much larger than the vertical scale. The thickness of the mud
layer is also assumed to be much smaller than the water depth above. With these
simplifications, the dynamic pressure in the mud column remains a constant and
the vertical displacement of the water–mud interface is negligible. The horizontal
gradient of the wave-induced dynamic pressure along the water–seabed interface
drives the motions in the mud bed. For a Bingham-plastic muddy seafloor, the mud
moves either like a solid (plug flow) or like a viscous fluid (shear flow) depending
on whether the magnitude of shear stress is in excess of the yield stress. Velocities
inside these two different flow regimes and the location(s) of the yield surface(s) vary
in time as functions of water–mud interfacial pressure gradient and the properties of
the Bingham-plastic mud. A semi-analytical approach is developed in this paper to
analyse the motions inside the mud bed under a surface solitary wave loading. Three
possible scenarios are discussed to illustrate the complexity of the seafloor responses.
The formula for the damping rate caused by the energy dissipation inside the muddy
seabed is also derived. Using realistic values of the physical parameters, the present
results for damping rate agree qualitatively with the available field observations.

1. Introduction

Along a muddy coast, wind waves are known to be easily damped out within a

few wavelengths. Gade (1958) reported a location called the Mud Hole in the Gulf

of Mexico, where the attenuation of ocean waves owing to a soft bottom is so strong

that in severe weather, fishing boats frequently use it as an emergency harbour.

During Hurricane Frederic in 1979, Forristall & Reece (1985) observed that off the

Mississippi Delta the wave height diminished from 8.6 m to 2.5 m over a distance

of 30 km. In terms of the incident wave energy, Wells & Coleman (1981) calculated

from the measured wave parameters that nearly 90 % of energy was dissipated as the

waves passed over the mud flat along the coast of Surinam. Elgar & Raubenheimer

(2008) recorded a 70 % wave energy flux reduction when a wave propagated 1.8 km

over the muddy seafloor along the Louisiana continental shelf. Similar muddy-bottom
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effects have been reported in many coasts, rivers and estuaries around the world

(Healy, Wang & Healy 2002), such as the coasts along the Yellow Sea between China

and Korea, the Indian Ocean coastline in South Africa, the Kerala coast of southwest

India and the North Atlantic Ocean coastline in South America (Mathew, Baba &

Kurian 1995; Massel 1996; Winterwerp et al. 2007). Mud in different locales can

have different rheological behaviour, partly as a consequence of diverse chemical

composition (Balmforth & Craster 2001). Because of the wide variation of seafloor

properties, many constitutive models have been proposed to study mud motions driven

by surface wave loadings, including the viscous fluid model (e.g. Dalrymple & Liu

1978), the viscoelastic model (e.g. MacPherson 1980) and the viscoplastic model (e.g.

Mei & Liu 1987, hereinafter referred to as ML). Based on the viscosimetric tests of

mud samples, Krone (1963) reported that for concentration Cw lying roughly between

10 to 100 g L−1, mud along the coasts of the United States displays both plastic

and viscous-like behaviour, depending on the external forcing. This non-

Newtonian rheology indicates that the muddy seafloor can be referred to as the

Bingham-plastic material, in which the one-dimensional constitutive equations are

expressed as

μm

∂u′
m

∂z′ = 0, |τ ′
m| � τ ′

o, (1.1)

μm

∂u′
m

∂z′ = τ ′
m − τ ′

osgn

(
∂u′

m

∂z′

)
, |τ ′

m| > τ ′
o, (1.2)

where τ ′
o > 0 is the yield stress and μm represents the Bingham-plastic viscosity. Values

of the physical parameters for different Bingham-plastic mud can be found in ML.

Mei, Liu & Yuhi (2001) also provided useful discussions on the relationships among

yield stress, Bingham-plastic viscosity, and the concentration for various types of

mud.

Within the framework of linear periodic wave theory, many workers have already

investigated the effects of viscous fluid mud bed (i.e. τ ′
o = 0) on wave propagation

(e.g. Gade 1958; Dalrymple & Liu 1978; Ng 2000). Liu & Chan (2007, hereinafter

referred to as LC) presented general analytical solutions for viscous mud flows

under weakly nonlinear and weakly dispersive waves. They also derived a set of

depth-integrated continuity and momentum equations for long-wave propagation

with the viscous mud bed effects considered. They found that for a surface solitary

wave loading, flow reversals occur near the bottom of the mud bed during the

decelerating phase of the solitary wave. Accordingly, the mud flow velocity profile is

not always parabolic in shape. Park, Liu & Clark (2008) presented a set of laboratory

experiments and confirmed LC’s model. Liu, Park & Cowen (2007) also demonstrated

that reversed flow appears inside the water boundary layer under a surface

solitary wave.

In a series of pioneering works, Mei & Liu have investigated the effects of Bingham-

plastic muddy seabed on long-wave propagation and shoaling. In particular, ML

examined a mud bed that is very thin compared to the height of the water column

above. Consequently, the vertical motion of the water–mud interface is very small and

can be ignored. Furthermore, the viscosity of water is relatively weak in comparison

with that of Bingham-plastic mud and therefore, frictional stress along the water–mud
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interface can also be ignored. These two assumptions were also adopted by LC in

their analysis for a viscous fluid mud bed. We remark that the simplification of

negligible water–mud interfacial displacement has been verified by Park et al. (2008).

In both Bingham-plastic and viscous cases, the mud flows are driven by the wave-

induced horizontal pressure gradient along the water–mud interface. Based on the

constitutive equations, (1.1) and (1.2), ML illustrated elegantly that under certain

approximations, the motions of Bingham-plastic muddy seafloor can be divided into

two regions: a plug-flow layer moving above a shear-flow zone. The plug-flow velocity

and the thickness of the shear-flow zone, or equivalently the location of the yield

surface, change in time depending on the magnitude of the pressure gradient and the

properties of the Bingham-plastic mud. Solutions must be obtained numerically by

solving two coupled partial differential equations. In analysing the shear flow, ML

applied the Kármán momentum integral method and adopted the parabolic profile

to describe the horizontal velocity inside the shear-flow region. They further assumed

that the plug-flow layer is always much thicker than the shear-flow zone. With

these two additional simplifications, the plug-flow velocity can be obtained explicitly

without knowing the shear-zone thickness, which has to be solved numerically from

the deduced ordinary differential equation. Their analysis does not allow the flow

reversal inside the shear-flow region as illustrated by LC for the viscous mud problem.

Although the studies on purely viscous fluid problems (Liu et al. 2007; LC; Park et al.

2008) do not necessarily guarantee the same behaviour in the Bingham-plastic fluid,

it is desirable to analyse the shear-flow region more carefully without using the

parabolic velocity profile assumption. In addition, we anticipate that under certain

combinations of yield stress, viscosity and pressure gradient, multiple shear-flow layers

(or plug-flow regions) can develop.

The objective of this paper is to investigate the responses of a Bingham-plastic

muddy seafloor to long water-wave loadings without some of the constraints imposed

in ML. For simplicity, we shall focus only on the free-surface solitary-wave loading. In

our approach, we shall relax the following two assumptions: the parabolic shear-flow

velocity profile and the negligible shear-layer thickness in computing the plug-flow

velocity. The relaxation of these two assumptions will allow us to investigate the

evolution of yield surfaces and the associated velocity profiles throughout the entire

mud column.

The paper is organized in the following manner. We first formulate the boundary-

value problems governing the motions of a thin layer of Bingham-plastic mud

responding to a long surface-wave loading. We then briefly review the approach

and assumptions employed in ML. Relaxing some of ML’s assumptions, we shall

discuss several possible scenarios of mud motions, which could have up to four

layers of alternating plug flow and shear flow under a surface solitary wave.

After mathematically formulating these moving boundary-value problems, which

are nonlinear, semi-analytical/numerical solutions are presented for the velocities

inside the mud column. Detailed discussions on the mud flow dynamics with

different physical parameters are presented. The damping rate for a surface solitary

wave is calculated using the energy conservation law. Using some estimated but

realistic physical parameters, the calculated damping rate is compared with field data.

Qualitative agreement is observed.
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2. Formulation

We consider a train of transient waves propagating in a constant water depth, h′
0,

over a muddy seabed of thickness d ′. The seabed is made of Bingham-plastic mud

and the mud flow is driven by the dynamic pressure along the water–seabed interface.

The wave motions are characterized by the typical wave height, a′
0, the horizontal

length scale, l′
0, which is related to the magnitude of wavelength, and the time-scale,

l′
0/

√
gh′

0. For simplicity, we shall consider only two-dimensional problems where the

x ′-direction coincides with the direction of wave propagation and z′
m denotes the

vertical coordinate within the mud layer. Denoting (u′
m, w′

m) as the horizontal and

vertical mud flow velocity components, p′
m as the dynamic pressure and τ ′

m as the shear

stress inside the muddy seafloor, respectively, the following dimensionless variables

are introduced

x = x ′/l′
0, zm = z′

m/(αl′
0), d = d ′/(αl′

0),

t = t ′√gh′
0/l′

0, um = u′
m/(ε

√
gh′

0), wm = w′
m/(αε

√
gh′

0),

pm = p′
m/(ρwga′

0), τm = τ ′
m/(αερmgh′

0),

⎫⎪⎬
⎪⎭ (2.1)

in which g is the acceleration due to gravity, ρw the water density and ρm the mud

density. Two dimensionless parameters,

ε = a′
0/h′

0, α2 =
νm

l′
0

√
gh′

0

, (2.2)

are used in (2.1) to measure the relative importance of the nonlinearity and the

viscosity, in which νm is the characteristic kinematic viscosity of the Bingham-plastic

mud and α2 can be viewed as the inverse of the Reynolds number.

2.1. Boundary-layer approximation

Following ML and LC, we assume that the muddy seabed is very thin compared

with wavelength and, furthermore, the displacement of the water–mud interface is

much smaller than that of the free surface, which indicates that for the present study

the water–mud interface can be viewed as a horizontal line, zm = 0. Hence, inside

the muddy bed, the flow motion can be described by the linearized boundary-layer

equations as (see LC)

∂um

∂x
+

∂wm

∂η
= 0, 0 � η � d, (2.3)

∂um

∂t
= −γ

∂pm

∂x
+

∂τm

∂η
, 0 � η � d, (2.4)

in which η = zm + d and γ = ρw/ρm is the density ratio. We reiterate that the dynamic

pressure inside the mud bed is independent of depth because of the boundary-layer

assumption.

Along the water–mud interface, the pressure is continuous. If we consider the water

viscosity to be negligible, the horizontal gradient of the dynamic pressure inside the

mud bed can be approximated from the horizontal momentum equation of the water

column. Denoting the prescribed water–mud interfacial pressure and horizontal water

velocity component as pb and ub, respectively, we obtain

∂ub

∂t
= −∂pb

∂x
= −∂pm

∂x
. (2.5)



Bingham flows in a muddy seabed 159

We should mention that pb and ub have the same non-dimensionalized scaling as

pm and um. Substituting (2.5) into (2.4), the momentum equation inside the mud bed

becomes
∂um

∂t
= γ

∂ub

∂t
+

∂τm

∂η
(0 � η � d). (2.6)

Along the water–mud interface, the tangential stress vanishes. Thus,

τm = 0, η = d. (2.7)

Along the bottom of the mud bed, η =0, the no-slip condition is imposed, i.e.

um = 0, η = 0. (2.8)

Once the horizontal velocity, um, is obtained, from the continuity equation, (2.3), the

vertical velocity component can be calculated by integration as

wm(x, η, t) =

∫ η

0

− ∂um

∂x
dη. (2.9)

2.2. Review of ML’s approach

The crucial assumption embedded in ML’s model is that under wave loadings, the

shear stress in the mud column decreases monotonically in the vertical direction with

the maximum magnitude at the solid bottom, η =0. Accordingly, inside the Bingham-

plastic mud bed there exists one shear-flow zone (um = us(x, η, t), 0 � η � η0) and

one plug-flow region (um = up(x, t), η0 � η � d) with 0 � η0(x, t) <d being the

location of the yield surface. We remark here that the terminology of plug flow in

both ML and the present analysis is referred to the flow region where the horizontal

velocity component is uniform in the vertical extent, but not necessarily invariant

laterally. More rigorously, the constitutive equations, (1.1) and (1.2), are actually the

leading-order approximation since the contribution from ∂um/∂x, which is negligible

as shown in the horizontal momentum equation, (2.4), has been ignored. Detailed

discussions on the validation of this approximate rheology curve can be found in

Balmforth & Craster (1999). By further assuming that the plug-flow region occupies

most of the mud column and employing the Kármán momentum integral method

along with a prescribed parabolic mud flow velocity profile, ML obtained the explicit

form for the plug-flow velocity, up ,

∂up

∂t
≈ γ

∂ub

∂t
+

−τosgn(up)

d
, η0 � η � d, (2.10)

and an ordinary differential equation for the location of the yield surface, η0,

up

∂η2
0

∂t
+

(
6γ

∂ub

∂t
− 4

∂up

∂t

)
η2

0 − 12up = 0. (2.11)

Based on ML’s model, the anticipated Bingham-plastic mud motions under a

surface solitary-wave loading are sketched in figure 1. In this figure the yield surface

location, η = η0, is designated as η1 when the mud flow moves in the direction of wave

propagation (from the left to the right) and η0 = η3 when it moves in the opposite

direction. Before the arrival of the solitary wave, the entire mud column behaves like

a solid and is at rest. As shown in phase 1 of figure 1, a shear-flow layer begins to
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Figure 1. Sketches of vertical profiles of horizontal velocity, um, inside the mud bed under a
surface solitary-wave loading (ML’s model and the two-layer scenario). All dots represent the
locations of yield surface (η0 = η1 for the positive mud motion and η0 = η3 for the backward
mud motion), dashed-dotted lines denote the water–mud interface and dotted vertical lines are
the zero velocity reference. A shear-flow layer develops when the bottom shear stress reaches
the yield stress at t = ts (cf. phase 1). Both mud velocity and the thickness of the shear-flow
region first grow and then decrease as shown in phases 2 to 4. The mud motion pauses at
t = t0 and restarts to move backwards at t = t1 (see phases 4 and 5). If t1 > t0, the mud flow
is intermittent (i.e. the mud is at rest for a finite time interval t0 < t < t1), otherwise it moves
continuously. Eventually, the mud motion stops at t = te and a cycle of mud motion under a
solitary-wave loading is completed. In this example, the velocity profile is always monotonically
increasing from zero at the bottom to the plug-flow velocity at the mud–water interface.

develop from the solid bottom at t = ts when the bottom shear stress τmb = τo. Clearly,

this incipient moment can be calculated as

γ
∂ub

∂t
− τo

d
= 0, t = ts, (2.12)

representing the balance between the driving pressure gradient, which is also

proportional to acceleration of wave motions at the water–mud interface, and the

bottom friction that is the same as the yield stress at this moment. Phases 2 to 4 in

figure 1 suggest that both the mud velocity and the thickness of the shear-flow layer

first grow and then diminish as the magnitude of the driving pressure gradient (or

acceleration of wave motions) first increases and then decreases. Eventually, the entire

mud column pauses and returns to the solid state at t = t0 (i.e. phase 4 in figure 1).

The shear flow starts to move in the opposite direction to the wave propagation

when the reversed driving pressure gradient yields the bottom mud again at t = t1 (see

phase 5). During the backward mud-flow-motion phases, the characteristics of mud

velocity and shear-flow-layer thickness behave very much like those at the forward

mud motion phases. Finally, the mud flow ends at t = te, as shown in phase 8. The

transition times t0, t1 and t = te are yet to be determined. ML suggested that when

t1 = t0, the mud flows continuously whereas the mud motion is intermittent if t1 > t0
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(cf. figure 1). For the intermittent mud flow, t1 can be calculated by

γ
∂ub

∂t
+

τo

d
= 0, t = t1. (2.13)

The physical representation of (2.13) is similar to that of (2.12) except for the directions

of mud flow and driving pressure gradient reverse.

Although ML’s model is ground breaking, the simplifications employed prevent it

from being applied to more complex flow conditions. For instance, the assumption that

the shear-flow-layer thickness is much less than the total mud bed thickness, d � 1, is

not always applicable. Consider a solitary wave propagating over a depth h′
0 = 10 m

with a′
0/h′

0 = (h′
0/l′

0)
2 = 0.1. The Bingham-plastic mud has a thickness of d ′ = 0.5 m

and a viscosity three orders of magnitude greater than that of water (i.e. αl′
0 = 0.05 m);

the dimensionless mud thickness is only about d =10. Moreover, it is well-known that

for a Newtonian boundary-layer flow under unfavourable pressure gradient, the strain

rate at the bottom can become zero and eventually a flow reversal occurs, implying

that the vertical variation of the strain rate is no longer monotonic. LC demonstrated

that during the decelerating phase of a surface solitary-wave loading, motions inside

the viscous fluid mud indeed exhibit the flow reversal behaviour. Under a transient

wave loading, because of the occurrence of unfavourable pressure gradients, a multi-

layer flow structure inside the Bingham-plastic mud, i.e. alternating layers of plug-

and shear-flow regions, can exist. Differing from ML’s approach, we seek to provide

a general investigation of the responses of a Bingham-plastic muddy sea bed to the

surface solitary-wave propagation.

3. Solutions inside a Bingham-plastic mud

Figure 2 illustrates the complete mud responses under a surface solitary-wave

loading. During the accelerating phases of solitary wave, 1 and 2 in figure 2, a shear-

flow region develops from the solid bottom when the pressure-gradient-generated

bottom friction overcomes the yield stress. The corresponding yield surface between

the plug-flow and the shear-flow regions is designated as η1(x, t). As the fluid particles

under the solitary wave start to decelerate, the unfavourable pressure gradient creates

zero strain rate at the bottom, which implies that the lower portion of mud is solidified

(plug flow) and a second yield surface, η2(x, t), appears; e.g. 4 in figure 2. The corres-

ponding time instant is denoted as t = t1. In terms of the constitutive curve, (1.1)

and (1.2), the development of the bottom plug-flow layer represents the transition

during which the bottom shear stress decreases from a positive yield stress to a

negative yield stress, τmb = − τo. As the solitary wave keeps propagating forwards,

the newly developed lower plug-flow region grows and the positive (unfavourable)

pressure gradient can liquefy the bottom solid mud again when the pressure gradient

overcomes the yield stress; i.e. 5 and 6 in figure 2. The third interface between the

plug flow and shear-flow regions is denoted as η3(x, t) and the time of its occurrence

is marked as t = ty . Consequently, a four-layer structure inside the mud column is

formed and a flow reversal occurs as shown in panel 7. The subsequent phases show

that the sandwiched shear layer vanishes, i.e. the upper two yield surfaces, η1 and

η2, merge at t = t1 in panel 8, since the driving (positive) pressure gradient becomes

fully favourable again. The sea bed continues to flow with a single yield surface
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Figure 2. Sketches of vertical profiles of horizontal velocity, um, inside the mud bed under
a surface solitary-wave loading (four-layer scenario). All dots represent the locations of yield
surfaces (η1,2,3), dashed-dotted lines denote the water–mud interface and dotted lines are the
zero velocity reference. The mud yields at t = ts when the bottom shear stress reaches the yield
stress. During the beginning phases 1 to 3, there is only one yield surface. In phase 4, a second
plug-flow region develops from the solid bottom in response to the unfavourable pressure
gradient and the mud plasticity at t = t0 and the new plug-flow layer grows as the strength
of the unfavourable pressure gradient increases (cf. phase 5). As the driving unfavourable
pressure gradient becomes stronger, the mud in the lower plug-flow region is yielded again at
t = ty in 6. The upper shear layer eventually vanishes, i.e. η1 and η2 are merged at t = t1, and
the mud motion returns to a single yield surface (η3) structure. The whole process of mud flow
ends at t = te .

structure as shown in panel 9 and eventually the whole mud column returns to its

initial resting state at t = te. The similar four-layer flow structure (i.e. 7 of figure 2)

has also been illustrated by Balmforth, Forterre & Pouliquen (2008) who studied the

Bingham-plastic version of the Stokes problem.

In addition to the four-layer and two-layer (ML’s model) scenarios, a three-layer

scenario is also possible (figure 3). This scenario occurs only if the driving pressure

gradient is not strong enough, so the second shear-flow region does not develop and

the second plug-flow region will build up until the whole mud column is solidified

before the backward mud motions take place (cf. 4 to 6 in figure 3). With this

exception, the three-layer scenario is similar to the four-layer scenario: the mud is

first liquefied at t = ts , a bottom plug-flow region begins to develop at t = t0, the

sandwiched shear layer vanishes at t = t1 and the whole mud motion ends at t = te.

Clearly, the flow reversal does not occur in both three-layer and two-layer scenarios.

We reiterate that the two-layer scenario, as shown in figure 1, can only occur when

the yield stress is so strong that during the middle phases the entire mud column

comes to rest without any bottom plug-flow zone developing (cf. 4 to 5 in figure 1).

In addition, there is no presumed shear-flow velocity profile in our two-layer scenario

and mud flow must be intermittent (i. e. no mud flow motion during t0 � t � t1). This

is very different from ML’s model.
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t = t0

t = t1
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η1 = η2

η3
η3

η3
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η1
η1

η2 η2
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η

Figure 3. Sketches of vertical profiles of horizontal velocity, um, inside the mud bed under
a surface solitary wave loading (three-layer scenario). All dots represent the yield surfaces
(η1,2,3), dashed-dotted lines denote the water–mud interface and dotted lines are the zero
velocity reference. The mud motion is initiated at t = ts and a second plug-flow region develops
from the solid bottom when t = t0. At t = t1, the whole mud column is solidified as the
transition between positive plug-flow velocity and the backward movement occurs (cf. phase
6). Thereafter, the mud bed moves backwards with a single yield surface (η3) structure towards
the ending instant, t = te . To be consistent with the definition in § 3.3, here the notation η3

denotes the lowest yield surface after η1 and η2 have merged. In this example, there is no
second, shear-flow layer and flow reversal does not occur.

Based on the above physical pictures, we can now formulate the mathematical model

describing Bingham-plastic mud motions under a surface solitary, wave loading within

the following framework

I. ts � t � t0: a plug-flow region is on top of a shear-flow region with a single

yield surface, η1 (cf. 1–4 in figure 1; 1–3 in figures 2 and 3);

II. t0 � t � t1: there are multiple yield surfaces with alternating plug–shear–plug–

shear–plug–shear flow structure (four-layer scenario: 4–8 in figure 2; three-

layer scenario: 4–6 in figure 3) or no mud motion at all (two-layer scenario: 4

and 5 in figure 1);

III. t1 � t � te: flows return to the plug–shear flow structure with a single yield

surface, η3 (cf. 5–8 in figure 1; 8–10 in figure 2; 7–9 in figure 3).

We note that all the different instants, ts , te, t0 and t1, have been illustrated and

described in figures 1 to 3. In addition, while for all scenarios ts has a common

definition (see (2.12)), t0 and t1 are different for two-layer or three/four-layer scenarios.

Both t0 and t1 are still parts of the solutions to be determined with the exception that

for the two-layer scenario, t1 has been defined in (2.13).

Despite the possibility of having different multi-layer structures, the momentum

equation remains the same in each shear-flow region,

∂us

∂t
= γ

∂ub

∂t
+

∂2us

∂η2
, (3.1)
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while within the plug-flow layer the momentum equation becomes

∂up

∂t
= γ

∂ub

∂t
+

τpt − τpb

κp

, (3.2)

where τpt and τpb are the shear stresses along the top and bottom of a plug-flow

region, respectively, and κp is the thickness of this specified layer. However, the

boundary and interfacial conditions are not the same for different flow scenarios,

which will be described in the following sections.

3.1. Stage I: initial single yield surface (η1) structure

During this initial stage (ts � t � t0), there is only one yield surface, η1(x, t), and the

vertical velocity gradient inside the shear-flow layer is always positive, which indicates

that plug-flow velocity, up1(x, t), is non-negative. Therefore, by integrating (3.2) in

time we obtain

up1(x, t) = γ [ub(x, t) − ub(x, ts)] +

∫ t

ts

−τo

d − η1

dt, η1 � η � d. (3.3)

As for the shear-flow velocity, we follow the approach of LC and introduce a new

variable

vs1 = us1 − γ ub. (3.4)

Thus, the two-point boundary-value problem (BVP) in this region can be expressed

in terms of vs1 as

∂vs1

∂t
=

∂2vs1

∂η2
, 0 � η � η1, (3.5)

with the initial condition

vs1 = −γ ub, t = ts, (3.6)

and the following boundary conditions

∂vs1

∂η
= 0, η = η1, (3.7)

and

vs1 = −γ ub, η = 0. (3.8)

In addition, the continuity of mud flow velocity along the yield surface, η = η1, must

be satisfied. Hence, from (3.3) and (3.4) it is required that

vs1(x, η1, t) = −γ ub(x, ts) −
∫ t

ts

τo

d − η1

dt . (3.9)

The BVP, (3.5) to (3.8), is similar to that derived by LC for a viscous muddy seabed

problem. However, the present problem has a moving boundary, i.e. η1 = η1(x, t),

which poses a mathematical difficulty in finding an analytical solution. Nevertheless,

by adopting the assumption that the thickness of the shear-flow layer is slowly varying

in time, η1(x, t) can be approximated as a constant within a small time interval, �t .

Therefore, using the Green’s function method (Mei 1995) the solution form can be
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obtained as

vs1(x, η, t) =

∫ η1

0

vs1(x, ξ, t∗)G(η, ξ, �t) dξ − γ

∫ �t

0

ub(x, t∗ + t)
∂G

∂ξ
(η, 0, �t − t) dt,

(3.10)

where

G(η, ξ, t) =

∞∑
n=−∞

(−1)n

2
√

πt

{
exp

[
−(η − ξ + 2nη1)

2

4t

]
− exp

[
−(η + ξ + 2nη1)

2

4t

] }
,

(3.11)

and 0 < �t = t − t∗ 	 1 in order to satisfy the slowly varying assumption, η1 = η1(x, t)

from t∗ to t . When t∗ = ts , the solution becomes

vs1(x, η, t) = γ ub(x, ts)

∞∑
n=0

1∑
m=−1

(−1)n+m

(
1 − |m|

2

)
erfc

[
η + (2n + m)η1√

4�t

]

− γ

2
√

π

∞∑
n=−∞

(−1)n(η + 2nη1)

∫ �t

0

ub(x, ts + t)√
(�t − t)3

exp

[
− (η + 2nη1)

2

4(�t − t)

]
dt,

(3.12)

with η1 = η1(x, ts + �t). Based on (3.12), it is possible to formulate the general

expression for vs1(x, ξ, t∗) in (3.10), which involves a multiple series. However, there is

no obvious computational benefit for doing so since the integrals in (3.10) still have

to be evaluated numerically. In summary, when the properties of the Bingham-plastic

mud and the velocity of water along the water–mud interface, ub, are given, the

thickness of the shear-flow layer, η1, can be calculated numerically from (3.9). Once

η1 is known, the velocities of the plug flow and shear flow can be obtained by (3.3) and

(3.10), respectively. We remark that the current stage ends at t = t0. For a two-layer

scenario, t0 indicates the moment that mud motion pauses from the forward motion

whereas in the three/four-layer scenario it represents the instant that zero shear strain

rate appears at the solid bottom (see figures 1 to 3).

3.2. Stage II: multiple yield surfaces structure for a three/four-layer scenario

During the unfavourable pressure gradient phase, a multiple yield surface structure is

formed when t0 � t � t1. As mentioned earlier, the mud bed is stationary during this

time interval in the two-layer scenario. Referring to figure 2, the maximum possible

number of yield surfaces is three, therefore, the momentum equations for these four

layers can be formulated as

∂up1

∂t
= γ

∂ub

∂t
+

−τo

d − η1

, η1 � η � d, (3.13)

∂us1

∂t
= γ

∂ub

∂t
+

∂2us1

∂η2
, η2 � η � η1, (3.14)

∂up2

∂t
= γ

∂ub

∂t
+

2τo

η2 − η3

, η3 � η � η2, (3.15)

∂us2

∂t
= γ

∂ub

∂t
+

∂2us2

∂η2
, 0 � η � η3, (3.16)
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where η1, η2 and η3 denote the yield surfaces. The associated interfacial and boundary

conditions are

up1 = us1, η = η1, (3.17)

∂us1

∂η
= 0, η = η1 or η = η2, (3.18)

us1 = up2, η = η2, (3.19)

up2 = us2, η = η3, (3.20)

∂us2

∂η
= 0, η = η3; us2 = 0, η = 0. (3.21)

An additional yielding criterion for the second shear-flow zone, 0 � η � η3, is

η3 = us2 = up2 = 0, t < ty, (3.22)

where ty is illustrated in phase 6 of figure 2 and can be determined by

γ
∂ub

∂t
+

2τo

η2

= 0, t = ty . (3.23)

We reiterate that since η2 is still part of the unknown solutions, the above criterion

must be checked at every time step. For the three-layer scenario, η3 is always zero in

this stage. As for the four-layer scenario, η3 > 0 when t � ty . In both scenarios, the

mud motion returns to a single yield surface set-up at t = t1 with η1 = η2 when the

wave-induced pressure gradient becomes truly favourable again (see 8 of figure 2 and

6 of figure 3).

Following the same solution method as shown in the previous section, the plug-flow

velocities can be obtained as

up1(x, t) = up1(x, t0) + γ [ub(x, t) − ub(x, t0)] +

∫ t

t0

−τo

d − η1

dt, (3.24)

up2(x, t) = γ [ub(x, t) − ub(x, ty)] +

∫ t

ty

2τo

η2 − η3

dt, t > ty. (3.25)

For the upper shear-flow zone, solution form of BVP, (3.14) with (3.18), is

vs1(x, η, t) =
1

2
√

π�t

∫ η1−η2

0

vs1(x, ξ + η2, t − �t)G1(η, ξ ) dξ, t > t0, (3.26)

where

G1(η, ξ ) =

∞∑
n=−∞

2∑
m=1

exp

[
−

(
η + (−1)mξ + 2n(η1 − η2)

2
√

�t

)2
]

, (3.27)

and vs1 = us1 − γ ub. We reiterate that �t should be small in order to satisfy

the assumption of slowly varying yield surfaces. In addition, the initial condition,

vs1 = vs1(x, η, t0), mudt be computed from (3.10). Similarly, for the second shear-flow

layer, i.e. (3.16) with (3.21), we obtain

vs2(x, η, t = t∗ + �t) =

∫ η3

0

vs2(x, ξ, t∗)G2(η, ξ, �t) dξ

− γ

∫ �t

0

ub(x, t∗ + t)
∂G2

∂ξ
(η, 0, �t − t)dt, t∗ � ty, (3.28)
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where G2(η, ξ, t) is the same as G given in (3.11), except for η1 being replaced by η3.

Recall that the initial condition for this region should be

us2 = γ ub + vs2 = 0, t = ty . (3.29)

So far, the thicknesses of each layer remain unknown. Three interfacial conditions,

(3.17), (3.19) and (3.20), are applied to obtain these variables. Therefore, at every

instant we must solve numerically a nonlinear system that involves three unknowns.

3.3. Stage III: single yield surface (η3) structure with negative plug-flow velocity

During this final period (t1 � t � te), the solutions are very similar to those in stage

I. Therefore, we can easily obtain

up1(x, t) = up1(x, t1) + γ [ub(x, t) − ub(x, t1)] +

∫ t

t1

τo

d − η3

dt, (3.30)

and

vs2(x, η, t = t∗ + �t) =

∫ η3

0

vs2(x, ξ, t∗)G2(η, ξ, �t) dξ

− γ

∫ �t

0

ub(x, t∗ + t)
∂G2

∂ξ
(η, 0, �t − t)dt, t∗ � t1. (3.31)

We reiterate that t1 is part of the solutions from the previous stages and the location

of the yield surface, η3, can be obtained by requiring

vs2(x, η3, t) = up1(x, t1) − γ ub(x, t1) +

∫ t

t1

τo

d − η3

dt . (3.32)

All solutions must be carried out until up1 vanishes at t = te, which completes the

process of Bingham-plastic mud response under a surface solitary-wave loading.

3.4. Examples

In this section, we present numerical solutions for Bingham-plastic mud motions

under a surface solitary-wave loading for different scenarios. The prescribed water

velocity along the water–mud interface is assumed to be the undisturbed solitary

wave given as

ub(x, t) = sech2

[√
3ε

2μ
(x − xo − Ct)

]
, (3.33)

where xo is the initial position of the wave crest and C =
√

1 + ε represents the dimen-

sionless celerity. The new parameter μ = h0
′/l0

′ measures the frequency dispersion.

In all cases presented here, the following wave parameters are used

x = 0, xo = −50, ε = μ2 = 0.1.

As for other physical parameters, we shall consider the following example

d = 10, γ = 0.7, α = 3 × 10−3, τo = 0.2.

In terms of dimensional values

h′
0 = 10 m, a′

0 = 1 m, λ′
0 = 200 m,

d ′ = 0.95 m, ρm = 1.43 g cm−3, νm = 3 × 10−3 m2 s−1, τ ′
o = 8.67 Nm−2,
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Figure 4. Muddy sea bed responses under a surface solitary wave loading (four-layer scenario)
at different phases: �, (a) θ = −(x − x0 − Ct) = −0.032; �, (b) 0.629; 
, (c) 0.760; �, (d) 1.019;
�, (e) 1.511; ©, (f) 1.851; �, (g) 4.284. γ = 0.7, τ0 = 0.2, d = 10. 1. The pressure gradient
(dashed-dotted line indicates the yield stress, τo/(γ d)). 2. Locations of yield surfaces, ηj ,
j = 1, 2, 3. 3. Water–mud interfacial plug-flow velocity, up1 (dashed-dotted line is the water
particle velocity at the water–mud interface, ub). The corresponding velocity profiles are
illustrated in figure 5. A second plug-flow region develops after phase (b) which is yielded
again at (d). The mud flow motion returns to a single yield surface (η3) structure as η1 and η2

are merged at phase (f ).

where λ′
0 ≈ 2πl′

0 has been defined as the effective wavelength. We remark that αl′
0 can

be viewed as the boundary-layer thickness based on the Bingham-plastic viscosity.

As mentioned in Mei et al. (2001), the properties of mud vary widely, depending

on the chemical composition, sediment concentration, salinity and other factors. For

instance, the mud found in Yunan Province, China has a viscosity three orders of

magnitude greater than that of water and the yield stress reaches O(100) Nm−2. On

the other hand, Krone (1963) reported that the mud in San Francisco Bay, USA has

a viscosity which is of the same order of magnitude as the water and the yield stress is

much smaller compared to the mud observed in China. The parameter set employed

here is within the range of Provins clay data collected by ML.

In figures 4 and 5 (four-layer scenario), figures 6 and 7 (three-layer scenario) and

figures 8 and 9 (two-layer scenario), we demonstrate the effects of the yield stress on

the resulting mud motions. Three different values of yield stress, τ0 = 0.2, 2.0, 4.0, are

used while all other parameters remain the same. In the case of a relatively small yield

stress (τo = 0.2), i.e. figures 4 and 5, the four-layer scenario inside the mud column

results. From (2.5) and (2.12), it is clear that the dimensionless parameter τo/(γ d)
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Figure 5. Muddy sea bed responses under a surface solitary-wave loading (four-layer
scenario) – vertical profiles of horizontal velocity component, um, at different phases:
(a) θ = −(x − x0 − Ct) = −0.032; (b) 0.629; (c) 0.760; (d) 1.019; (e) 1.511; (f) 1.851; (g)
4.284. (a)−(g) show the velocities throughout the entire mud column while (a′)−(g′), are
enlargements for 0< η < η1 or 0 < η < η3 at the same phases. In each plot, the dotted line
represents the zero velocity reference line. Clearly, a second plug−shear-flow pair is formed
from the solid bottom during the deceleration phase of the surface solitary wave and the flow
reversal occurs (cf. phase (e)).

measures the relative ease of mobilization of the mud under a given incident wave. As

the yield stress is weak relative to the wave loading (τo/(γ d) = 0.029, see panel 1 in

figure 4), the Bingham-plastic mud is quickly liquefied and a shear-flow layer starts to

develop from the solid bottom when the friction due to the yield stress is balanced by

the pressure force. We note that because of the viscous shear, the plug-flow velocity

at the water–mud interface, up1, is not in phase with the velocity of the solitary wave

and the mud flow can move in the opposite direction to wave propagation (see 3 in

figure 4). During the initial period (θ < −0.032, phase (a)) both the plug-flow velocity,

up1, and thickness of the viscous shear layer, η1/d , grow in time. The velocity profile at

the phase (θ = −0.032) of maximum plug-flow velocity is shown in figure 5(a). As the

crest of the solitary wave passes, the unfavourable pressure gradient eventually slows
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Figure 6. Muddy sea bed responses under a surface solitary-wave loading (three-layer
scenario) at different phases: �, (a) θ = −(x − x0 − Ct) = −0.218; �, (b) 0.363; 
,
(c) 0.430; �, (d) 0.479; �, (e) 0.594; ©, (f) 1.664. γ = 0.7, τ0 = 2, d = 10. 1. The pressure
gradient (dashed-dotted line indicates the yield stress, τo/(γ d)). 2. Locations of yield surfaces,
ηj , j = 1, 2, 3. 3. Water–mud interfacial plug-flow velocity, up1. The corresponding velocity
profiles are shown in figure 7. A second plug-flow region develops at phase (b), but no flow
reversal appears (i.e. at each instant the maximum possible number of yield surface(s) is two).
The entire mud column pauses at phase (d) and immediately continues the backward motion
as a single yield surface structure.

down the forward motion in the mud column as shown in 3 of figure 4. However,

the corresponding shear-layer thickness, η1/d , is still increasing until phase θ = 1.658

(see 2 in figure 4). At the phase θ = 0.629 (t = t0), i.e. figure 5(b), the shear strain rate

vanishes at the bottom of the muddy bed and the lower most Bingham-plastic mud

returns to its plastic state (plug flow). Once the mud is solidified, the friction between

the bottom of the mud layer and the solid bed prevents this portion of mud from

moving. The material plasticity serves as a resistance to the viscous force. As the

unfavourable pressure gradient continues to push the mud column backwards, the

thickness of the second plug-flow region (with zero velocity), η2/d , increases and the

shear-flow-layer thickness, (η1 −η2)/d , shrinks (cf. phases (c) to (d) in figures 4 and 5).

Since the yield stress is relatively small in this case, as the unfavourable pressure

gradient persists, the bottom plug-flow region is eventually yielded again. A new

shear layer is formed at θ = 1.019 (i.e. phase (d), t = ty) and continues to grow (see (d)

to (e) in figures 4 and 5). At this point, there are two plug-flow regions (η1 <η <d;

η3 < η < η2) and two shear-flow layers (η2 < η < η1; η <η3); the two plug-flow regions

move in the opposite direction and flow reversal occurs (cf. (e), figure 5). The process

continues as the lower shear-flow layer grows and the middle shear-flow layer shrinks.
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Figure 7. Muddy sea bed responses under a surface solitary wave loading
(three-layer scenario) – profiles of horizontal velocity component, um, at different phases:
(a) θ = −(x − x0 − Ct) = −0.218; (b) 0.363; (c) 0.430; (d) 0.479; (e) 0.594; (f) 1.664. (a)−(f)
show the velocities throughout the entire mud column while (a′)−(f ′) are the detailed features
at the same instants. In each plot, the dotted line indicates the zero velocity reference. Because
of the strong effect of plasticity, a plug-flow region builds up from the solid bottom and
eventually pauses the mud flow at the transition between forward and backward mud motion
(see (b) to (d)). As a result, it is impossible for the flow reversal to develop. When the sea bed
begins to move in the opposite direction to the solitary-wave propagation, the mud column
can be described again by a single yield surface structure.

Finally, the sandwiched shear layer vanishes at θ = 1.851 (i.e. phase (f), t = t1) and the

mud motion returns to a single yield surface structure moving towards the end of the

event at θ = 7.833 (t = te). We notice that when the wave crest already propagated

far away, i.e. ub ≈ 0 or pressure gradient vanishes (see 3 in figure 4), it is actually the

inertia of the mud that drives its motion. We remark that the flow reversal, as shown

in figure 5(e), is also found in the Newtonian fluid mud problem studied by LC (see

figure 1 (c) in LC). However, the fundamental difference between these two cases is

that there is no plug flow in the Newtonian fluid mud problem.

For the case with a larger yield stress (τ0 = 2.0, figures 6 and 7), it requires a

stronger driving pressure gradient to yield the mud and to create the first shear-

flow-layer (cf. 1 in figure 6). The shear-flow-layer thickness is also relatively thinner

than that in the previous case. During the unfavourable (positive) pressure gradient

period, for instance figure 6(c), the strong plasticity suppresses the viscous force

and the pressure gradient. As a result, the bottom solid layer (plug flow) builds



172 I-C. Chan and P. L.-F. Liu

–1 0 1 2
–1.0

–0.5

0

0.5

1.0

1

2

3

–1 0 1 2
0

0.05

η1

η3

–1 0 1 2
–0.04

0

0.04

∂pm
∂x

ηj

d

θ = (x – x0 – Ct)

up1

Figure 8. Muddy sea bed responses under a surface solitary wave loading (two-layer scenario)
at different phases: �, (a) θ = −(x − x0 − Ct) = −0.818; �, (b) −0.471; 
, (c) −0.188; �, (d)
0.784; �, (e) 1.141; ©, (f) 1.413. γ = 0.7, τ0 = 4, d =10. 1. The pressure gradient (dashed-dotted
line indicates the yield stress, τo/(γ d)). 2. Locations of yield surfaces, ηj , j = 1, 3. 3. Water–mud
interfacial plug-flow velocity, up1. The corresponding velocity profiles are illustrated in figure 9.
In this case, the shear-flow region is relatively small owing to the large yield stress. The mud
flow motion pauses for a long interval before it starts to move backwards. Only a single yield
surface structure appears throughout the whole process.

up and eventually the mud motion pauses (cf. figure 7(d)). From phase (b) to (d),

i.e. stage II: t0 � t � t1, there is only one shear-flow layer being sandwiched by two

plug-flow regions. Immediately after the zero motion moment, a new shear-flow

layer develops from the solid bottom and continues to grow as the positive pressure

gradient increases, see phases (e) and (f) in figures 6 and 7. The mud flow structure

now returns to a single yield surface structure progressing towards the end of the

whole process. We reiterate that there is no flow reversal in this case and mud flow

motion is continuous.

Figures 8 and 9 show a case where the mud has an even stronger yield stress,

i.e. τ0 = 4.0. The sea bed is barely liquefied and the mud flow motion is relatively

small with a single yield surface structure throughout the process. Obviously, a flow

reversal is impossible in this case. The mud flow moves intermittently with no motion

in the range −0.149 � θ � 0.438 (t0 � t � t1, t1 given in (2.13)). Although we have

demonstrated that our results can have very different features from the approach

of ML for low yield stress situations (cf. figures 4 to 7), the solutions of this high

yield stress case (τ0 = 4.0) are indeed similar to those presented in ML. Figure 10

shows the locations of yield surfaces and the plug-flow velocity from both studies.
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Figure 9. Muddy sea bed responses under a surface solitary-wave loading (two-layer
scenario) – profiles of horizontal velocity component, um, at different phases: (a)
θ = −(x − x0 − Ct) = −0.818; (b) −0.471; (c) −0.188; (d) 0.784; (e) 1.141; (f) 1.413. (a)−(f)
show the velocities throughout the entire mud column while (a′)−(f ′) are the detailed features
at the same instants. In each plot, the dotted line indicates the zero velocity reference. The
velocity profiles vary monotonically in all phases, which is similar to those presented in ML.

Two models give similar results with some differences. The discrepancy can be mainly

attributed to one of ML’s assumptions that the shear-flow-layer thickness is small

and negligible when computing the plug-flow velocity (see (2.10)). Apparently, this

assumption becomes invalid as d decreases.

In figure 11, we show the shear strain rate along the bottom of the muddy bed

(η = 0), (∂um/∂η)mb, which is proportional to the bottom shear stress, τmb. In all

three cases, there exists an interval when zero velocity gradient appears along the

solid bottom, i.e., |τmb| � τo. As shown before, for the large yield stress case, τ0 = 4.0

(figures 8 and 9), within this period the entire mud column is solidified and remains at

rest, while for the other two cases the upper portion of the mud column keeps moving.

Therefore, there is no clear trend describing the length of the zero strain rate interval

as the physical processes are quite different for each case. The mud movement appears

to start and end more gradually for the case of smaller yield stress, i.e. τ0 = 0.2. When

the yield stress is very low, the mud behaves close to a viscous fluid. However, we

remark that for a purely viscous fluid mud, the zero bottom strain rate occurs only

at an instant.
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Figure 10. Comparison of results from ML and current study for the case of large yield stress,
τ0 = 4.0. (a) The locations of yield surfaces (ML: dotted line; current study: dashed-dotted
line= η1, dashed line= η3) and (b) is the water–mud interfacial plug-flow velocity (ML:
dashed-dotted line; current study: solid line). r = 0.7; d = 10.

–4 –2 0 2 4 6 8
–0.4

–0.2

0

0.2

0.4

0.6

mb

∂um

∂η
|

θ = (x – x0 – Ct)

Figure 11. The strain rate of various types of mud bed at the bottom. The mud is assumed
to have different yield stresses with dashed line, τo = 0.2; solid line, τo = 2.0; dashed-dotted
line, τo = 4.0. r = 0.7; d = 10.

The effect of Bingham-plastic viscosity on the mud flow motion has also been

investigated. In figures 12 and 13, we show the plug-flow velocity and locations of

yield surfaces for various dimensionless mud-layer thickness, d = 1, 5 and 10, with

the same initiation parameter: τ0/(γ d) = 0.029 in figure 12 and 0.29 in figure 13,

respectively. Since

τ0

γ d
=

τ ′
0

d ′
1

εμρwg
, (3.34)

in each figure a different value of d ( = d ′/(αl′), α2 ∼ νm) can be interpreted as the

result of changing viscosity (i.e. treat τ ′
0, ρm and d ′ as constants). Despite the fact

that the mud flow motion is initiated at the same instant with a fixed τ0/(γ d), it does

not guarantee that the subsequent mud flow motions will be the same. For instance,

all three cases display a four-layer scenario when τ0/d = 0.02 (figure 12), but behave

differently for τ0/d =0.2 (figure 13). As can be seen, low-viscosity mud (larger d) can
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Figure 12. Effects of viscosity on the mud flow motion with τ0/d = 0.02: fixed τ0/d represents
the same τ ′

0 and d ′; small d stands for high viscosity mud. (a) The water–mud interfacial
plug-flow velocity, up1, with dashed line: d =10, solid line: 5, dashed-dotted line: 1 and dotted
line the zero velocity reference. γ =0.7; τ0/d = 0.02. (b) Locations of the yield surfaces, ηj/d ,
j = 1, 2, 3, with dotted line, η1; solid line, η2; dashed line, η3. All three cases display a four-layer
scenario and the mud is initiated at the same instant. Low-viscosity mud (larger d) tends to
have faster forward plug-flow velocity and the overall mud-flow duration is longer.
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Figure 13. Effects of viscosity on the mud flow motion with τ0/d = 0.2: τ ′
0 and d ′ are fixed

while a small d corresponds to a high-viscosity mud. (a) The water–mud interfacial plug-flow
velocity, up1, with dashed line, d = 10; solid line, d = 5; dashed-dotted line, d = 1. γ = 0.7;
τ0/d = 0.2. (b) Locations of the yield surfaces, ηj/d , j =1, 2, 3, with dotted line, η1; solid line,
η2; dashed line, η3. While d =1 (high-viscosity mud) shows a two-layer scenario, the other two
are three-layer scenarios.

move faster in the forward direction and the duration of the mud flow motion is

longer. In addition, the time interval within which the multiple yield surfaces appear

tends to shorten as the viscosity increases (d decreases). However, this does not
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Figure 14. Effects of physical mud-layer thickness, d ′, on the mud-flow motion: a fixed value
of τ0 represents the same viscosity and yield stress (cf. (2.1)). (a) The water-mud interfacial
plug-flow velocity, up1, with dashed line: d = 10, solid line: d = 5, dashed-dotted line: d = 1
and dotted line the zero velocity reference. γ = 0.7, τ0 = 0.2. (b) Locations of the yield surfaces,
ηj/d , j = 1, 2, 3, with dotted line: η1, solid line: η2 and dashed line: η3. For a thinner sea bed,
d = 1, the mud-flow motion shows a two-layer scenario while thicker mud cases are four-layer
scenarios.

imply that ML’s single yield surface model is adequate when the multi-layer interval

becomes small (e.g. d = 1 in figure 12) as the mud flow behaves very differently, i.e.

flow reversal occurs, within this period.

We next examine the effects of the actual mud-layer thickness, d ′. In figure 14, the

mud column is thicker for larger d since all other physical parameters are kept the

same (see (2.1), constant τ0 and γ are equivalent to fix τ ′
0 and νm). We see that the

thin mud-layer case, d = 1, has a much smaller plug-flow velocity as the relative yield

stress, τ0/d , is stronger. Referring to figures 4 to 9 (various yield stress, τ0), we can

conclude that the mud bed thickness and strength of yield stress show similar effects

on the mud-flow motion: low τ0/d cases are easier to initiate and tend to have a

multi-layer mud structure, stronger plug-flow velocity and a thicker shear-flow region.

As can be seen in figures 4 to 9, the asymmetry of interfacial mud-flow velocity,

up1, suggests that in the light of Eulerian description, the particle orbit of mud is not

closed. As a solitary wave described in (3.33) passes by, water particles undergo a

forward shift

�w =

∫ ∞

−∞
ubdt =

4√
3

μ

C
√

ε
. (3.35)

By simply integrating over time, along the water–mud interface the net mud movement

is �m/�w = 0.357, −0.033, −0.002 for the cases in figures 4 to 9, respectively. These

results reveal that the wave loading could impose an opposite net movement on

the Bingham-plastic mud and as the mud becomes stiffer the magnitude of the net

movement almost vanishes. The above statement can by no means be referred to the

mass transport rate.
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3.5. Wave damping

Estimating wave energy dissipation in the muddy sea bed and the corresponding

wave damping rate is a key objective in studying the interaction between waves and

seafloor. Referring to Dalrymple & Liu (1978) and ML, in a moving coordinate

following the wave propagation the balance of wave energy requires

dE′

dt ′ = −D′
m, (3.36)

where E′ and D′
m represent the wave energy and the energy dissipation in the muddy

sea bed, respectively. The dissipation in (3.36) can be calculated by

D′
m =

∫ ∞

−∞

∫ 0

−d ′
τ ′
m

∂u′
m

∂z′ dz′ dx ′. (3.37)

For a solitary wave, the dimensionless free-surface profile, ζ (x, t), can be expressed in

the form

ζ =
ζ ′

a′
0

= asech2

[√
3εa

2μ
(x − xo −

√
1 + εa t)

]
, (3.38)

where a = a′/a′
0 � 1 is the dimensionless wave height and recall that ε = a′

0/h′
0.

Therefore, the total wave energy for a solitary wave, i.e. sum of the potential (E′
p)

and kinetic (E′
k) energies, can be obtained as

E′ = E′
p + E′

k, (3.39)

where

E′
p =

∫ ∞

−∞

1
2
ρwgζ ′2dx ′ =

4

3
√

3
ρwg (a′h′

0)
3/2, (3.40)

and

E′
k =

∫ ∞

−∞

1
2
ρw(h′

0 + ζ ′)u′
b

2
dx ′ = (1 + 0.8εa)E′

p. (3.41)

If nonlinearity is weak, i.e. ε is small, we can assume E′
k ≈ E′

p . In addition, for long

waves, the celerity is roughly equal to group velocity, C ′ ≈ C ′
g , which means

dE′

dt ′ = C ′
g

dE′

dx ′ ≈ C ′ dE′

dx ′ . (3.42)

Substituting (3.37) and (3.39) into (3.42) into (3.36), we derive the evolution equation

of dimensionless wave height

da

dx
= −

(
α

√
ε

γμ2

√
3

4

)
1√
a

∫ ∞

−∞

∫ d

0

τm

∂um

∂η
dηdx = −

(
α

√
ε

γμ2

√
3

4

)
FD√

a
, (3.43)

where FD , the dissipation function, represents the double-integral term and has to be

calculated numerically.

As an example, figure 15 shows the evolution of solitary-wave height (panel II)

for the parameter sets employed in figures 4 and 5 (four-layer scenario), figures 6

and 7 (three-layer scenario) and figures 8 and 9 (two-layer scenario), respectively.

The corresponding dissipation functions from both the current and ML’s models

have also been calculated and shown in panel I in the same figure. For the larger

yield stress case (τ0 = 4.0, two-layer scenario), our results fit well with those of ML,
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Figure 15. I. Dissipation function, FD (see (3.43)), for γ = 0.7, d = 10 and τ0 = 0.2, 2, 4. Solid
lines are the current results while dashed-dotted and dashed lines are solutions of ML. II.
Evolution of dimensionless wave height (a = a′/a′

0) with respect to the propagated distance.
Solid lines represent the current model results (corresponding to figures 4 to 9 respectively) and
dashed lines are the solutions of ML. All circles (WC81) are the field observations of Wells &
Coleman (1981) and the dashed-dotted line (ER08) shows the calculation using the measured
dissipation rate at 4.5 m deep water by Elgar & Raubenheimer (2008). In our numerical
example, we consider a constant water depth, h′

0 = 10 m, whereas for WC81 the depth ranges
from 7.1 to 8.7 m.

as expected. However, the discrepancy becomes obvious as the strength of the yield

stress decreases. Note that we are unable to compare the results for τ0 = 0.2 (four-layer

scenario) since an unbounded shear-layer thickness occurs in ML’s model (see figure

4 in ML for more details). In addition, in panel I we observe that there is no clear

relationship between the values of FD and strength of yield stress. In the case with

larger τ0, the corresponding strain rate is weaker. However, the product of strain rate

and shear stress, which actually accounts for the energy dissipation, is not necessarily

smaller (i.e. FD can be larger). Referring to panel II, we find that the wave height can

be damped out severely by the presence of Bingham-plastic mud. For instance, the case

of τ0 = 0.2 shows that wave height could be reduced by 50 % after it propagates over

x ′/h′
0 ∼ 600. Moreover, as can be seen in panel II, both our results and ML’s solutions

approach asymptotic values (or equivalent to FD approaching zero in panel I),

which means that the attenuated surface solitary wave can no longer move the

Bingham-plastic mud as the diminished wave pressure gradient becomes too weak

for the mud to yield, i.e. |∂ub/∂t | − τ0/(γ d) < 0. Since mud with weaker yield stress

is less able to resist the viscous shearing than that with stronger yield stress, it can

eventually dissipate more wave energy.

In figure 15 the field observations by Well & Coleman (1981, WC81: circles) and

Elgar & Raubenheimer (2008, ER08: dashed-dotted line) are also plotted in panel II.

For Well & Coleman’s observations, the water depth at the first station in their

experiment (i.e. h1 in table 1 of Well & Coleman 1981; h1 = 7.1 − 8.7 m) has been

used, whereas in Elgar & Raubenheimer’s damping curve we adopt a constant depth
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of 4.5 m (see figure 2 in Elgar & Raubenheimer 2008). We recall that in our results

x ′/h′
0 = x/μ with μ =

√
0.1 and h′

0 = 10 m. As shown in panel II, one of our wave

height curves (τ0 = 0.2) is close to WC81 and ER08. In fact, if we increase the value

of τ0 slightly, the results will fit WC81 very well. However, we do not expect that

our present model can fully explain the field observations, as the wave conditions

and mud properties in both WC81 and ER08 are incomplete. For instance, the

mud in WC81 is inhomogeneous with density, ρm = 1.03 − 1.24 g cm−3, and viscosity,

μm = 0.002 − 20 kg−1 m s−1. In addition, the mud-layer thickness is about 0.5 m.

Although no yield stress data is available in WC81, the mud is said to exhibit very

low strength. For the mud property in ER08, the sea bed has been described as

a layer of 0.3 m thick yogurt-like mud above a harder clay bottom. The mud has

a density, ρm = 1.3 g cm−3, and can resist shear. Despite the fact that the physical

parameters in the field studies and the current numerical examples are not perfectly

matched, the comparison of wave height attenuation does suggest that the muddy

seabeds mentioned in these two sites behave more closely to Bingham-plastic mud

with weaker yield stress where ML’s model is not adequate for describing the mud-flow

motion as the multi-layer scenario occurs.

4. Concluding remarks

Responses of a Bingham-plastic muddy seafloor under a surface solitary-wave

loading have been investigated. A semi-analytical/numerical approach is used to

obtain solutions inside the mud bed. Our analyses suggest that layered flow structures

can occur, depending on the yield stress and the viscosity of the mud, the thickness

of the mud bed and the strength of the solitary wave. Four alternating plug-flow and

shear-flow layers are possible. The wave damping rate for the solitary wave is also

estimated and there are indications that they agree qualitatively with available field

data. Although we have successfully demonstrated the detailed mud motions driven

by a surface solitary-wave loading, further studies, both analytical and experimental,

are required in order to understand better the mud dynamics under more complex

water wave loadings, such as cnoidal waves and irregular waves.
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